If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2-3k-20=0
a = 2; b = -3; c = -20;
Δ = b2-4ac
Δ = -32-4·2·(-20)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-13}{2*2}=\frac{-10}{4} =-2+1/2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+13}{2*2}=\frac{16}{4} =4 $
| 4(a-8)+6=6 | | 3y+15-4y-8=-2y+10 | | 8x+6+2=-4x+1 | | 3n-7=38 | | 2(m+5)=6m-8 | | −5x+56=9x | | 2x-7=40-3x | | −5x+56=9 | | 3y-1/4=2y-3/6 | | 38(7-2.5x)=12(2x-11)+52.9 | | 2x+20=4x-17 | | (x+2)(x-4)=x²-1 | | 2(m-4)-3=3(m-7) | | 60*x=80*(X-80/60) | | 9x-33=6x-6 | | 60*x=(x-80/60) | | 5(x-4)=-3(x+1)+19 | | c^2+2c-c^2-6c=10c-12 | | 6x-29=3x-5 | | 6x29=3x-5 | | 5/3x-2=1/2x-2/3 | | 142q=5.62q+11.2 | | Y=-5/16(x+8)(x-8) | | x+4=-4-3x | | n2=1.5 | | n2= 1.5 | | P(142)=5.62q+11.2 | | 6h-18-2h+1=9 | | 0=2m+3-m | | 5(x+4)-8(6x-7)=9x-8 | | -2(2x+3)=2(5-2x)-2x | | 3x^2-6x=3x^2+5x-11 |